拉索全景航拍图(2022年7月)
广角切伦科夫望远镜阵列(WFCTA)
水切伦科夫探测器阵列内部
本报讯 5月10日,记者从中国科学院高能物理研究所获悉,国家重大科技基础设施高海拔宇宙线观测站(LHAASO,又称“拉索”)通过国家验收。
拉索是以宇宙线观测研究为核心的国家重大科技基础设施,2015年12月31日获得国家发展和改革委员会批复立项,项目由中国科学院和四川省人民政府共建,由中国科学院成都分院与中国科学院高能物理研究所承担建设,建设周期4年。拉索主体工程于2017年动工,于2021年全部完成建设。拉索项目先后通过了由主管部门中国科学院组织的工艺、建安、财务、设备资产和档案五个专业组验收。
受国家发展和改革委员会委托,中国科学院会同四川省组织本次验收会,来自国家发改委、中咨公司、科研院所、高校等单位的20余位专家出席验收会。
验收委员会认为,中国科学院成都分院和中国科学院高能物理研究所按期、全面、优质完成了国家发展改革委批复的建设任务,各项指标达到或优于批复的验收指标,同意该项目通过国家验收。拉索的1/4规模探测装置于2019年4月投入试运行,全规模探测装置于2021年7月投入试运行,整体性能可靠,具备长期稳定的科学运行能力。拉索充分利用特定地域4410米优越的高海拔条件和先进技术优势,创造了三项“世界之最”——超高能伽马射线探测灵敏度世界最高、甚高能伽马射线源巡天普查灵敏度世界最高、超高能宇宙线能量覆盖范围世界最宽。拉索的建成运行,使之成为目前国际粒子天体物理三大实验设施之一,对促进该领域实现重大原创突破、带动前沿交叉相关学科发展和国际合作具有重要意义。
拉索位于甘孜州稻城县海子山,平均海拔4410米,占地面积约1.36平方公里,由5216个电磁粒子探测器和1188个缪子探测器构成的一平方公里地面簇射粒子探测器阵列、7.8万平方米的水切伦科夫探测器阵列、18台广角切伦科夫望远镜等三大阵列组成。拉索采用四种探测技术,可以全方位、多变量地测量来自于高能天体的伽马射线和宇宙线。
拉索首席科学家、中科院高能物理研究所研究员曹臻介绍,拉索在建设过程中,实现了多项重大自主技术创新,推动了相关技术的革新与发展:首次在大视场成像切伦科夫望远镜中大规模使用新型硅光电管,改变了这类望远镜不能在月夜工作的传统观测模式,实现了有效观测时间的成倍增长;发展了适应海拔4000米以上野外工况的大面积、高精度、多节点、远距离时钟分配技术,远距离同步精度达0.2纳秒,比原有技术提升5倍,达到国际领先水平;采用了国产20英寸超大型光电倍增管,将时间响应提高了3倍,观测阈能从3000亿电子伏降低到700亿电子伏,观测能力达到国际领先水平;在海量数据获取技术上取得显著进步,发展并实现了“无触发”数据获取,对宇宙线事例实现“零死时间”观测,实现海量数据从海子山观测基地到中国科学院高能物理研究所的实时数据传输。
拉索建设期间即开展1/4规模和全规模阵列试运行,对高能宇宙线持续观测,基于其超高的探测灵敏度,在试运行期间已取得多项突破性的重大科学成果。拉索在银河系内发现大量超高能宇宙加速器候选天体,并记录到人类观测到的最高能量光子,开启了“超高能伽马天文学”时代。精确测定了标准烛光蟹状星云的超高能段亮度,发现1千万亿电子伏伽马辐射,挑战理论极限。
拉索项目建设单位充分发挥中国科学院建制化研究的优势,依托设施开展观测与理论研究,并面向国内外全面开放共享,目前,已有28个天体物理研究机构成为拉索的国际合作组成员单位。合作组利用拉索观测数据开展粒子天体物理研究,同时进行宇宙学、天文学、粒子物理学等众多领域基础研究。“拉索将成为以中国为主、多国参与的国际宇宙线研究中心,借助高海拔伽马天文、宇宙线的观测优势,成为独具特色、综合开放的科学研究平台。”曹臻说道。(本报记者 马静璠)